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ABSTRACT 

A d-dimensional random walk on a lattice is studied in which each step is 
bounded, and may depend on the previous m steps. It is proved that if trivial 
cases are excluded, there are no recurrent points for d _~ 3, and conditions are 
given for the existence of sets, recurrent conditional on the first ra steps, 
for d = 1, 2. 

Let X t , X 2 , " - ,  be a sequence of  d-dimensional random vectors with integer 
valued components, and let S , ,=X  1 + . . .+X,, .  In the case where the X~ are 
mutually independent, each taking each of  the values + e~ with probability 1/(2d), 
where ej is the vector with unity in itsj-th component and zeros elsewhere, P61ya 
proved in [8] that 

Pr{Sn = 0 for an infinity of  values of n} 

( l a )  = 1, i f  d = 1 ,2 ,  

( lb)  = 0, if d > 3. 

The recurrence problem when the Xi form a Markov chain has been studied in 
generality only by Gillis [5], although other writers have dealt with the distribution 
of  Sn in this case for d =  1, and Seth [9] has obtained some further results on 
recurrence for this value of  d. Gillis proved that P61ya's result still holds if the Xi 
have the same range as above and satisfy symmetry conditions of  the form 

(2) Pr{Xn = ¢ [ Xn-I  = ¢'} = Pr{X, = - ¢[ X , _ l  = - ¢'}, 

and simplifying restrictions which he conjectured to be inessential, although his 

proof  of  ( lb)  did not cover the odd integers ~ 3. 
In this note I suppose that the Xi form a multiple Markov chain of  arbitrary 

dependence, and are bounded, and by means of  a different method based on the 
recurrence properties of  finite Markov chains and generalisations of  P61ya's 
result, [1,4],  give a necessary and sufficient condition for (1) to hold essentially. 
(Complete enumeration of  the particular cases corresponding to degeneracies in 
the transition structure would be tedious). However, unlike Gillis's analysis of  the 
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backward equations of the Sn process, this method does not readily provide in- 
formation on the distribution of Sn. 

Let us suppose that the X~ form a multiple Markov sequence of order m, [2, 
pp. 89, 185], subject to the condition that if X[ j)is the j th component ofXtthen 
with probability one 

d 

(3) II x, II = I "1 B. 

Let Z~ = (Z~ 1), ..., Z~ m)) = (Xi,... , Xi-m + i)be defined for i ~ m as the m dimension- 
al vector whose components are consecutive vectors of the sequence {Xt}. The 
sequence {Z~} is a simple Marker chain M, [2], and by (3) it has a finite state 
space C. To avoid the uninteresting complications referred to above it will be 
assumed that M consists of a single ergodic class, (assumption E). Now choose an 
arbitrary state ~oeC, and denote by 7"1, T2, ..., the random values of n for which 
Z,,= ~o and define the following random variables, 

k 

U|= T[+I- Ti, Vi=ST,+I--ST,, Wk= ~a V[ 
i = l  

(4) Xt(~) = 1 if Zt = [, = 0 otherwise, 

Tl+ 1 
v,(O = ~ x,(O. 

/ = T I + I  

It is known from recurrence theory, [3, Chapter 15, in particular Exercises 19,25] 
that the Ul are independent, and for i => 2 are identically distributed with 
Pr{U i = k} = a t where for some positive A < 1, ak < 2 ~. The V, are also independent 
and for i > 2 are identically distributed. (This approach and similar notation has 
been used by Katz and Thomasian [7] to obtain probability bounds for sums of 
functions defined on Marker chains.) Further, since M has a finite state space it 
admits a stationary distribution p([) with the property that for some con- 
stant A, 

#v,(O = Aft(O, ( = v(O). 

Let ~(~) be the marginal distribution induced by fl on the first component of ~. 

above, 
I f  conditions (3) and (E) hold, then for the sequence V~ defined 

(i) , V ~ = A  Y~ ~ ( 0 ,  

ill v, II < oo. 
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Proof. (i) 
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ce, 

[September 

TI+t 

= ~ ~*Xj 
j = T l + l  

= 2 t ;° )v(O 

= A ~ ~")P(O 

= A E ~(0. 

oO 

(ii)  llv, ll _< ak(kB) 2 
k = l  

OD 

< B 2 ~ k22 k 
k = l  

= B ~ ( 1  + ~ ) / (1  - ~)3. 

Let p be a possible value of W~, and let Q1, Q2, "", be the finite or infinite subset 
of  {T~} for which W~ =p.  Then since Wk =P is equivalent to STk+,--ST, =p,  
Zrk+l = (o, we have the result 

(5) Pr{St = a I( ' ;  Q~ < 1 < Qi+l} is independent of i. 

Suppose now that the initial state is chosen arbitrarily, Zm=~', i.e. the first m 
steps XI, .-.,Xm are specified. A value a (or a pair a ,O, will be called a possible 
value (or pair), given ( ' ,  if respectively 

Pr{Sn = , [ Z ,  = ¢'} > 0, 

Pr{S, = a, Z~ = ~ [Zm = ¢'} > 0. 

Trmo~M 1. Under assumptions (3) and (E), for d = 1, 2; 
(i) i f  ?E~(¢)= O, every point a that is possible given ~' is also recurrent 

given ~', 
(ii) if  X ~ ( ¢ )  # O, no point is recurrent. 

Proof. (i) Consider the sequence Wk defined in (4), taking ~o = ~'. By Lemma 1, 
(i) it satisfies the conditions for the existence of  a recurrent set, given in 1"1,4]. 
Let us choose a point p belonging to this set and suppose that a is a point, possible 
for S, given ~', not belonging to it. Then 

Pr{St = e l i ' ;  Qt < l < O,+a} > 0 

for some i. But by (5) this holds for all i, and hence a is recurrent. 
The set of  possible values given ~' will in general consist of  a subset of  the 

cosets of  a subgroup of  the additive group of one or two dimensional integers 
respectively. 
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(ii) The points which are possible for Wk given ( '  are transient for Wk given ( ' .  
Let p be such a point. Now suppose that some point a is recurrent for S.. Then 
by the finiteness of  C, some pair (a, (")  must be recurrent. Let T[, T~,..., be the 
values of n for which S. = a, Z, = (". Now Wk=P for some k if and only if 
Sl = p, Zl = ( '  for some I. Since p is possible for Wk we have 

Pr{S, = p,Z, = ( ' l ~ ' ;  T(<  l < T[+,] > 0 

for some i, and hence for all i since (S, = tr, Z,, = [") is a regenerative event in 
the sense of (5). This implies the recurrence of  p and the contradiction estab- 

lishes the result. If  the symmetry condition 

(6) 
P r { X .  = ¢ . 1 x . _ 1  = ¢ . _ . . . . , x . _ .  = ¢ . _ . }  = 

P r ( X .  = - = - ¢ . - 1 , - . . , x . - .  = - n > m ,  

is imposed on the transition probabilities, it is easy to see that the stationary 
distribution on m must be symmetric, f l ( [ ) = / 3 ( -  O, hence ~(~)= c t ( -  ~) and 
condition (i) of Theorem 1 is satisfied. It can readily be seen that (6) is satisfied 
by the correlated random walk studied by Gillis in [5], mentioned earlier, and 
also by the two dimensional process which he discussed in [6]. In both these 
eases all points are recurrent whatever the initial step. 

TrlEOREM 2. For d >= 3, every point is a transient point of S,. 

Proof. Suppose there exists a point a such that Pr (S. = a for an infinity of 
n) = n > 0. Then since the state space C is finite there must exist a ~o such that 
S. = a ,Z ,  = (o for an infinity of  n, with probability re. Using this [o, define 
a sequence V~ as in (4). Then we have a sequence of independent random variables, 
for d => 3, for which it is not true that every point is transient, which contradicts 
the assertions of [1, 4]. 

I am most grateful to the referee for pointing out an error in my discussion 
of  Lemma 1, (i), and showing that Theorem 1 held under wider conditions than 

I had originally imposed. 
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]BIOld]~rRIC~ SECTION, 
T ~  NA~tnte CONSnVANCY, 
LONDON 

APOLOGY 

The Editors apologize to the author of the article: "On the mean length of 

the chords of  a closed curve", which appeared in Vol. 4, No. l, for printing 

his name incorrectly. The author's name should read G~bor LOK(~. 


